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SUMMARY

An Investigation was made of & thin-walled cylinder under axial
compression and various intermal pressures to study the effect of the
Internal pressure on the compressive buckling stress of the cylinder.

A theoretical analysls based on a large-deflection theory was also made.
The theoretically predicted increase of compressive buckling stress

due to intermal pressure agrees fairly well with the experimental
results.

INTRCDUCTION

The buckling of thin-walled cylinders under axial compression and
lateral pressure has been Investigated by Flllgge (reference 1) who
found that the effect of the intermsl pressure on the buckling load is
negligible. Fligge's conclusion 1s in contradiction to the results of
a serles of tests, made at the Langley Aeronautical Laboratory of the
NACA, of two curved panels under axlel compression and varlous lateral
pressures. Thess test resulis, reported in reference 2, showed an
appreciable strengthening effect of the lateral pressure on the buckling
load of the curved panels. The apparent dlscrepancy between these
experimental results and the prediction by Fligge's theory made it
degirable to investigate this problem further. Consequently, additional
tests were made of a cylinder under axial compresslon end various
internal pressures for which results are presented herein. A theoretical
analysls of this problem 1s also presented which differs from that of
Flilgge in that the present analysis 1is based on large, rather than small,
deflsction theory.
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APPARATUS AND PROCEDURES

Test_specimen.- The.specimen used for the tests was & cylinder,
32 inches long with a 15-inch inside radius, made of 248-T aluminum
alloy sheet of 0.0249-inch average thickness. It-was closely riveted
around two heavy steel rings, one at each end. The butt-Joint of the
two longitudinal edges was covered both Inside and outsilde by straps,

0.032 inch thick and I% inch wide, alqu the total length of the cylinder.

(See fig. 1.)

The two heavy steel rings were made of %- by b-inch steel bar stock

rolled to the diameter of the cylinder. Two %— by 2-inch spreader bars
wore used to reinforce the ring as showh in figure 1. A ring with a

flenge, machined flat, was fastened to—the %- by 4-inch steel ring to

provide an even bearing surface on which a steel cover plate was fitted.
Three steel blocks were placed on top of the plate. _The applied .

compressive load was transmitted from the machine head through the three
steel blocks to the cover plate. The Joint between the cylinder and the
cover plates was sealed. L oL Sl ' '

Equally spaced along the inside circumference qf the cylinder at
midlength were 16 strain gages, and directly opposite to them on the
outside were 16 more gages. These gages were placed to measure strains
in the longitudinal direction. Six more gages, three inside and three
outslde, were placed to measure the circumferentlal gtralns.

Test procedures.- The speclimen was subjected to compressive load
in the 1,200,000-pound universal testing machine of the Langley
structures research laboratory. Compressed alr was used to produce
internsl pressure, which could be maintained at any desired constant
value. The pressure was measured by a mancmeter. The strains were
recorded by standard electric straln-gage equipment and the end.-
shortening was measured. by dial gages.

The cylinder was preloaded and the strain-gage readings were
teaken. The three gteel blocks were so adjusted that all longitudinal
gtrain-gage readings around the circumference of the cylinder were equal.

The compressed air was then let into the cylinder untll the
deslred internal pressure was reached. The axial compressive load
was Increased in ilncrements until buckling was observed. At each load

increment, all gage readings were recorded. The load was then decreased
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until the buckles disappeared and increased a second time to check the
reading obtalned the first time. During all these steps the intermal
pressure was maintained constant. '

The axial load was then reduced and the intermal pressure was
changed to another value. TFor each value of internal pressure the same
procedure was repeated.

EXPERIMENTAL, RESULTS

A typical experimental result is shown in figures 2(a) and 2(Db)

for the case in which the intermal pressure was l%’psi. In figure 2(a)

the compressive load 1s plotted againsit the strain-gage readings for
four different palrs of gages, withln the range where the load-strain
relation is linear. -In figure 2(b) the strain-gage reading is plotted
for all straln gages at three compressive loadings close to the buckling
load. Figure 2(b) indicates that buckling occurs at a compressive load
of 12,700 pounds between straln gages 22 and 23. (Note the intersection
of the curves at two comnsecutive loadings.) A buckle at this location
was observed during the test. The compressive load at which this
phenomenon occurs ls consldered the buckling load.

Since ths buckling occurs locally and not simultaneously at all
the gages, the local buckling strain is obtained by dividing the buckling
load by the slope of the linear portion of the load-strain curve corre-
sponding to the gage at which the buckling occurs. The corresponding
stress is the bucklling stress. The buckling stresses.for various
internal pressures were determined in this same way.

The results are tabulated in table 1 and plotted in figure 3 in
terms of the two nondimensional parameters

- chrZE

Ocr =" & t
2

= _ PR

P = E(‘b)

where Cugy 1s the buckling stress, p 1s the Internal pressure, R is

the radius of the cylinder, t 1s the wall thickness, end E 1is’
Young's modulus. Except for the first test corresponding to 3 = 0.1028
in which the cylinder had undergone no previous buckling, all the tests
were carried out on the cylinder wlth possible permanent set.
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THECRETICAL RESULTS

A theoretical analysis for calculating the buckling stress of a
cylindrical shell under axiel compression and internsl pressure was
obtained by a'"large-deflection" theory for which detalls are gilven
in the appendix. ' The large-deflectlon theory was first advanced by
Von Kérmén and Tsien: (reference 3) in the study of buckling stress of -
cylindrical shells under axial compression (but without internal
pressure). This theory was subsequently 1mproved by Leggett and Jones
(reference 4)., In reference 3 the buckling stress was shown to depend

on whether the load was apnlied by a rigid losding mnn'h'l-na or 'h-\-r a

dead-welght machine. In the present analysis, the oading machine ilg
assumed to be rigild. S .

The existing procedures for computation of the buckling stress by
large-deflection theory involve the solution of four &imultaneous
nonlinear egusations for each pressure loading. The rumerical work
1s gqulte lengthy. The method used in the present study introduces a
fifth equation which governs the conditions at which the buckling
occurs. The fifth equation 1s based on consideration of conservation
of energy, which is an extension of Tsien's buckling criterion given
in reference 5. Although a solution of five gimultansous equatlons
1s now necesgsary, the numerlcal work 1ls actually reduced to a small
fraction of that required if the existing procedures were used. This
reduction in labor is made possible through a proper choice of the param-

eters In the equations and the procesy of the computatlons. The resulta .

calculated by the present method are presented in table 1 and are
represented by the solld-line curve in figure 3 The curve 1s cut off
at a value of &gy = 0.605, corresponding to D & O. 169. This constent
value of— 8.p = 0.605 for p > O. 169 18 ‘the same that 1s obtained by
the classical theory.

DISCUSSION AND CONCLUSIONS

From the theoretical and experimental results shown in flgure 3,
the internal pressure ls seen to have an appreclable strengthening effect”
on the cylinder. Although the two curves ohtained from theoretical
and experimental results do not coincide, both show the same trends
as regards the effect of internal pressure on the buckling stresaes.

If the increment of the buckling stress AJcr due to the presence

of intermnal pressure (that is, the difference between the buckling
stress with the pressur® Ggp and that without the pressure (Ucr)' - O)
is plotted against the internmal pressure, as shown in filgure 4, a good
agreement ls obtained between the.theoretical and experimental results.
These data indicate that, although further improvement of the theory
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1s necessary for the determination of the magnitude of the compressive
buckling stress, the theory gives a fairly good prediction of the
increase of compressive buckling stress that may be expected as a result
of Intermal pressure. The discrepancy between the theoretical curve
and the experimental curve of figure 3 ls belleved to be caused by such
factors as manufacturing Imperfections in the specimens, material
irregularities, and emnergy absorbed by the loadling machine, which have
not been Included in the theory.

>

Langley Aeronautical Laboratory
Natlional Advisory Committes for Aseronautlcs
Langley Ailr Force Base, Va.
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APPENDIX

THEORETTCAL ANALYSIS OF BUCKLING LOAD OF CYLINIRICAL SHELLS
UNDER AXTAL COMPRESSION AND INTERNAL FRESSURE BY
LARGE-DEFLECTION THEORY

Background of .Theory

The use of large-deflection theory for shells under axial compression
was first advanced by Von Kfrmdn and Tsien (reference 3) in an attempt
to explain the dilscrepancies between the buckling loads predlcted Dby
classical theory and those obtailned from experimental results. (See
for instance, reference 6.) The results of reference 3 indicated that
cylindrical shells can be maintained in equilibrium in the dbuckled
state by a compressive load considerably lower than that predicted by
classical theory. A plausible explanation of this result is that, before
the classical buckling load is reached during a test the cylindrical
shell "jumps" from an squilibrium unbuckled state tq an equilibrium
buckled state. The physical phenomena of the Jump were further examined
In reference 5 by Tslen. . —

The treatment of Von Kérmdn and Tsien in reference 3 was left—
incomplete, however, in that the equilibrium positions at the buckled
state were determined by differentiating the total potential energy
with respect to some but not all of the physical parmmeters involved.
The resulting equations gave & relation between the gverage compressive
stress o and the end-shortening € i1in terms of the remalning parameters.
A set of curves of ¢ against € were thus obtalned for various
combinations of the remaining parameters. —

Improvement of Von Kermén and Tsien's theory was made by Leggett
and Jones (reference &), who took the derivatives of the energy with
regpect—to all the parameters and thus obtalned a single curve
between o &nd €, representing all equilibrium pos]tions of the
cylindrical shell in the buckled state. The seme result was obtalned
by Michielsen (reference 7) in a similar process. Such a .curve 1s shown
by BC of figure 5. N T

Theoretlcally, when the cylinder is compressed, the relation
between o and € follows the straight line ODA which represents
the unbuckled state and will reach the point A if everything is perfect;
the cylinder then buckles and the relationship follows the curve ABC _
which represents the buckled state. Before point A 1s reached, howsver,

some external disturbance may possibly cause the cylinder to Jump from __
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the unbuckled state represented by the point D to the buckled state
represented by the polint E. The positions of D and E on the respective
curves depend on the actual physical conditions of the jump.

If the physical condition which governs the Jump is known or
defined, the buckling stress corresponding to the point D can be
obtalned directly without going through the labor of finding the curve
ABC. This procedure can greatly reduce the amount of numerical work.

In reference 5, Tslen introduced a criterilon which governs the
Jump DE for the condition of loading obtained in & rigid testing machine,
namely, that the straln energy remains the same before and after the
Jump and that the jump occurs at constant end-shortening. According
to this criterion the line DE must be vertlcal and must cut the curve
AB in such a way that the two shaded areas ADG and GBE are equal. In
fact, the area ADG represents the addlitlional energy that is needed to
agsist the cylinder In Jumping from & condition represented by D to that .. -
represented by G and the area GBE represents the energy that 1s given e -« =%

up by the cylinder when it arrives at the[lowefjenergy level, point E. %5*3—;
The energy represented by the area ADG is very small, and therefore '~ 2t

a slight disturbance from the surrounding air might assist the cylinder

to Jump from the unbuckled state to the buckled state at a compressive

stress well below the classical buckling stress corresponding to point A.

Since the external disturbance is required to assist the cylinder
to Jump from the state corresponding to D to that corresponding to G,
a slightly larger external disturbance can well cause the cylinder to
meke the transition from the staté represented by D' to that represented
by B, except that in the case in which the cylinder Jjumps from D' to B
the cylinder absorbs the energy of the extermal disturbance and does not
reemit it. The buckling stress can be then as low &s point D'. This
fact was pointed out by Tsien in reference 8.

In addition to the two criterions Just mentioned, there are still
others that might be used. In view of the fact that the cholce of the
buckling criterion is a much less lmportant factor in the determination
of buckling stress than are such other factors as, for example, the
initial Imperfections, Tsien's criterion of reference 5, as reprosented
by the line DE, is as reasonable as any other, and the choice of this
criterion greatly simplifies the numerical work.

Tgien's criterion of reference 5 cannot be applled directly to the
present enalysis, however, because with the presence of the Intermal
pressure the strain energy 1s no longer the same before and after the
Jump. In addition, the criterion 1s applied hereln in quite a different
manner from that of reference 5. In reference 5, & series of values of
wave number n and aspect ratio B were chosen and the criterion was
applied to each pair of values of n and B; the palr of values of n
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and' B which gave the minimum value of buckling load was considered to
correspond to the buckling condition. In the present analysls, since the
variation of o with € can be plotted only as a single curve, this
criterion need be applied only once for each intermsl pressure. The
results correspond to the minimum-potential-energy condition.

In the derivation of the present anelysis, the basic equations In

‘reference 3 are first extended to Include the effect of Internal pressure,

Tslen's criterion governing the Jjump for rigid mechine loading
(reference 5) is modified, and the buckling stress .is finally obtained.

Symbols

A 1list of-symbols follows. Most of the symbols used In the present
paper are the same ag those in reference 3; exceptions are the use '
of p for Poisson's ratio, A for wave length and B for asnect ratio
of the buckled waves.

g half wave length 1n longitudlnal directlon

M “half wave length in circumferential direction
fo, 1, fo . . parameters used in deflection functlon

m . number of waves in longitudinal direction within

length equal to cilrcumference of cylinder

n nmber of waves 1n cilrcumference

o]

" internal pressure
t : thickness of cylinder wall

X,y coordinates measured in longitudinal and
clrcumferential directions, respectively

u component of displacement of -a point on medilan
surface of shell in x-direction

W component of displacement of & point on medlan
surface of shell in radial direction

@ meagure of average clrcumferential stress per
wave length in longitudinal direction

€ ~ end-ghortening of cylinder

[

It
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<]
m
g
E
¥
By, Bp,... Bg

average compressive stress
aspect ratio of buckled waves
Poisson's ratio

total potential energy
Young 's modulus

strain ensrgy
certain functions of B

certaln functions of p and B

(D represents the functions D1, Do,... D5)

(D represents the functions Dy, Dp,... D5)

radius of cylinder

elagtlc extensional energy

bending energy

work done by applied compressive load

work done by internal pressurs

Nondimensional pareameters:

p=£2.

e
i
Hy
[
ct

-]
i
=]

]
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W=—" - (W, Wp, W3, and W, are defined in the same
%Etxaxb a “manner.)
=T tanb. _
¥ =t
FEoary ) _
€ = 6% N
= _[= _ 1 -
Subscripts:
0 pertaining to-buckling condition
u unbuckled state just—prior to buckling
cr buckling condition

Derivatlon of Basic Equations

Three basic equations are derived in the following analysis to
include the effect of intermal pressure. They are the expression for
the total potentlal energy, the expression for the gtrain energy, and
the relation between the end-shortening and the average compressive
gtress. =

In order to calculate the-total potential ensrgy, the work done by

the Internal pressure should be included in additlon.to the energiles W,
Wy, and W3, which are given by equations (25), (26), and (27) of

reference 3 as:

+-

W ! 2 \2
1 1 1
r——ﬂ%-ﬂ®+*%¥+ﬁmfﬁﬂ
et L \T | L
fo + %fl>] +

2 gl k4 L b L
[Az pgh B2 php | phe? piE2 2}(1)

+

+ -
873 (1+ 8% (1 +982)2 (9+82)2 161+ 82)

S
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Wo 1 /324 2[1 2 1 h}

(1 + BY)EE,y + (L1 + B2 (2)

W
Sy L2 s o o (3 et o)
o 8

2“% (fo + i‘ﬁ)] (3)

where a, b, i, and v bhave been changed to Ag, Ap, B, and W,
respectively, to agree with the notation of the present paper and where

1
B.=-§f12n2

Q
I

1. of1 1
ofim <§f1 + fe)‘ 1

1 1

(@]
Il

2
D.2 (%-fl + f2>

H
1

The work dome by the intermal pressure 1s, for a complete wave pansel,

Aa A
Wy = -4 wp dx dy
) 0 0
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The negatlive slgn is introduce& because the radisl deflection w 1is
congidered positive inward.

If the same deflection furctlon given in equation (16) of reference 3
is used, that is, ’ -

r\ f1
%: <f5+—l%->+—'é‘(cos %cos% +~% cos%&+%cos %‘L) +

f

-f-<005 == S -agz) o (1)

the work done by the internal pressure becomes

Iy
Wp = -bpRAghy, <fo o (5)

IT the total potentlal energy
§ =Wy +Wp - W3 -Wp

is differentiated with respect to f, and the derivative is set equal
"to zero, the following expression is obtained

il

Substitute this expression into equations (1), (2), (3), and (5) for Wy,
Wp, W3, and Wp, respectively, and the following equations are obtained:

o]
+ 2]-1- PB + ﬁ) +
lEtx oMb li( > ( >(E’°> (E“G } N
nl*(Blfl + By 3ty + 1331"12:1?22 + '.Buflf—3 + —l—*f24> -

n2 [(231;_ + fl3 + <)-|-B)+ + flzf_%

[<2Bu+ >fl +§flf +§E‘2] . (7
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W
SEthah,

JE:x e 4[%%)2 * 2”(%> (%) * %(%)32‘32@{‘12 *Eyfy feg)] (9)
o2l

o (B aff)(®) - (B o] oo
2 8

2
= (’E‘) <B5f12 + Bgfafp + Bgff) o* (8)

where :
B = ?éﬁ}_gﬁ = (1 +§hs2)2 " +§;152)2 T %32)2]
B = 113% (1J3+lL 22 (1 +ﬁ:a2)2 e ih ﬁ2>2]
B3 =113—% (1%&2)2 e +ﬁ:Be)2 +,(9 fhﬁgﬁ]
S S LI

B 1+ p2)2

L 1 1 N
Bs = m[g(l + B2)° 4+ (1 + B )]

< i
Bg = ——=—=-(1 + B¥)
TR
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Equations (7) to (10) may be expressed in terms of the nondimensional

parameters &8, D, P, N, ¢, and W as

Wy = h(&g + 2p8f + §2>+ n2§“D2 + nt3(- D3) + t2p,
Wy = 162D _
W3 = 852 + 8uGp + &nt2D,
Wy = 8053 + 8% - 50ty
where : : P
D, = %BQG‘ F o+ p2>
Dp = By + Bpp + Bge? + Byo3 + B0t
D3 = <231+ +—éL—h_>(l + 2p)
Dy = (2284 + -§J=2-) + -lg(p + 02.) -
D5 = By + Bg(o + 02)

The nondimensional total-potentiel-energy parameter. P 1s
B =iy +Wp - Wy - Wy

= - 4(52 + 2udp + B°) - (5 - 2;ﬁ>ﬂ§2Dl +
. 32

n2§hD2 - n§3D3 + CzDh + q2§2D5_-

NACA TN 2021

(11)
(12)
(13)

(14)

(15)
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The nondimensional straln-energy parameter T 1s
T=W +¥W
= 4(52 + 2u5D + p2) + nzch‘De -
n¢3p3 + 7Dy + 1°¢PDg

The relatlon between the end-shortening ¢ and the average compressive
stress can be determined from equation (23) of reference 3 by integrating;
thus,

g
__i au.dx
ra, =
0

) o e o)

where o/E, as determined from equation (24) of reference 3, together
wlth equation (6) herein is

iR

R
Et

Therefore, the relation between & and 0 in nondimensional form
becomes

m

Il

m
o+ |0

& + ub + %ng%l (17)
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Equations (15), (16), and (17) are for cylinders in the buckled state.
For cylinders in the unbuckled state, the corresponding equations are

B, = -4(5,2 + 2u5yp + 5°) (18)
Ty = h(&u2 + 2uG,0 + 52) B (19)
Eu = au + :l-’-f) ' T (20)

Equilibrium Positlons of Cylinders in BuokledIState

The equilibrium positions of cylinders In the buckled state can
be obtalned by differentiating the total potential energy of equation (15)
with respect to each of the parameters 7, €, p, and B and by setting
the derivatives equal to zero. Four simultensous, nonlinear equatlions
are thus obtained: '

=0=- <5 - E]-Ef)ﬂbl - 2(n¢)2D, + (nt)D3 - éﬁ%](%%)

-

3
on
%% =0 =- (6 -.-;—25)111)1 - 2(n8)2D, + 1.5(n8)D3 - D, - n2D5:l (28)

Bp =0 == (E - EJE-)T](D]_)Q - (T)C)E(Dé)p + (ﬂc)(D3“_).p - (D)-l-)p =
1]2-(]) ) ]gE > (21)
5'p
8 _,. [( - L3)a(o1)g - (°)g + (I(D5), -

5. 2
(Dy)g - nB(Ds)g + B—éanl]%
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where
and
By’
1 _
132 =
B3' =
By' =

17

(DJ_)p = %Be(l + 2p)

(D2)p = By + 2Byp + 3]311_92 + 2Byp3
(D3)p = (B)_{_ + 6)-!->

_ 1
(D), = (1 + 20)
(D5)p = Bg(1 + 2p)
(D1)g = Be(i- +p + 92> = 2D

) ' 1 1 1n,

(Dy)g =By' +Bp'p + By'e? + By 03 + 2By, ol
(D3)p = 283, "(1 + 20)
(Dh)ﬁ = 2IB);‘_'

(D5)g = Bg" + Bg'(p + p?)

gl
(1 +-B2)3

gl

gt
(1 + 9p2)3 ¥

75 + 82)

3}

|

g
(1 + 982)3
gh .

(1 + 982)3

I
B
S
g

%
(9 + £2)

+
(1 +82)3

e
2 (1 +p2)3

|

L

(1 + )3
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o' = (5 - -;:I-))ﬂDl
The four simultaneous equations (21) beccme
5' = (n8)2(2D,) - (nt)D3 + 2n°Ds (228)
= (nt)3(2Dy) - (nt)(1.5D3) + Dy + 12Ds (22b)
oofon - | > |
--{EQQ) (Dg)p (ﬂ§)(D3)p + (Du)- +n (D5) T‘Ijg _ (22¢)
o' = EHC)Q(DQ)B - (ng)(D3)g + (Dy)g + nE(D?)%E - ";%nDl (224)

Theoretlically these four simulteneous equations can be aolved for 1,
£, p, and B 1n terms of § for a glven pressure. Ifthey are
substituted into equation (17), a relation between ®nd-shortening &
and the compressive gtress G 1s obtained whilch represents all
equilibrium positions at the buckled state. In fact, this solution
is essentially that obtained by Leggett and Jomes (reference 4) and
Michielsen (reference 7) for cylinders with axial campression but no
internal pressure. =

Practically, however, the solution of the four simultaneous
equatlions (22) requires a long and tedlous numerical process. If only
the buckling stress is required, calculation of only one point—on
the curve of & against ¢ rather than the whole curve is necessary.
This eolutlon can be obtained by the introduction of one more equation
which governs the condition at buckling.

i

]

[T T
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Buckling Criterion

. In reference 5, Tsien gave the following criterion which governs
the condition at buckling: That the strain-energy of the buckled
cylinder is the same as the strain energy of the unbuckled cylinder
when the cylinder is tested in the rigild testing machine so that the end-
shortening does not change during buckling. This criterion is apparently
established from considerations of conservatlon of energy. Although
other physical criterions cen be.used (for instance, see reference 8),
the criterion of reference 5 was chosen and extended to include the case
for which the internal pressure is present. The choice of this criterion
simplifies the numerical work.

When intermal pressure 1s present In the cylinder, work is done by

the pressure during buckling. The strain energy in the buckled state
is no longer equal to that in the unbuckled state, but

Vo= v A (23)

where AW, is the work done by the pressure during buckling,

or p
_ Ag [y
1 (R
Aﬁr =T o p(w - w,)dx dy
SEthg)y, o Jo

-, - (), (@)

Equation (14) can be rearranged as follows:
W = 8(52 + psd) - =pntD; (25)
b BZ
Therefore, for the unbuckled state, the last term 1s eliminated and
- afed L = =
(W), = 8(5= + nd,B) (26)
Then, from equations (24), (25), and (26)

NPy = 8up(5 - 3y) - -‘;‘-2-571‘;2131 (27)
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The buckling criterion becomes (equations (23) and (27))
¥ =y, + &5 -G, - -—PnEEDl
or, from equations (16) and (19),
4(32 + 2udp + 52) + n2thp, - n§3D3 +.§2D4_; 1282D5
= 4(5,2 + 2055 + 52) + 8(5 - Gy)ub féﬁn@]}l (28)

Since the end-ghortening remains unchanged during bugkling, that is,

¢ = §,, the following relation is obtained from equations (17) and (20)

Eu = 5’ + "38=‘T]§2D1 - . - (29)

If this relation is substituted in equation (28) and if the reiation -

5! =.( - ézp)nbl is used, the buckling criterion becomes.

- (03(o, - Fpr2) - (0); + 3y, + P05 (30)

The solution of the five equations (22a), (22b), (22¢), (224), and (30)
glves the buckling stress for a given intermal pressurs. The following
sectlon presents a very simple method for the solution of these five
gimultaneous equations.

Method of Solution : o

From equations (22b) and (30) and equations (22a) and (22b), the
following equations are obtained:

Sy : (31)
2(D2 + ']—_ng )
7]2 = _ %33(W§) S . © (32)

D5



NACA TN 2021 21

For & preassigned value of f, assume various values of p and
compute n6 and 12 from equations (31) and (32). Substitute these
values in equations (22a) and (22¢) to obtain (¢'), and (5'),,

respectively. Plot both (&'), and (3'), against p. The intersection

of these two curves determines & pair of values ¢' and p which are
called &'y, andi p,. The corresponding (n¢), and (n2), are computed

and substituted in equation (22d) from which the pressure $ can be .
calculated. For each assigned valus of B, there are obtained
corresponding values of 3'y and D. A curve of G'j against P

can thus be determined. If the following relations are used,

padl ]
9%

(nnl)o(c'ro - ;)

- - 1
Gor =(8u)o = o + Q(ﬂgebl)o
the relation between 0gp» and p is obtained as shown in figure 3.

Cut-0ff Buckling Stress
L J

When equation (31) is derived from equations (22b) and (30), a
factor (nf) = 0 1s also obtained. If this relation is used instead
of equation (31), 1t can be shown that the buckling stress Gop

can never exceed the classical buckling stress 0.605 which is independent
of pressure.

°
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TABLE L1

BUCKLING STRESSES FOR VARIOUS INTERNAT PRESSURES

Experimental Theoretical

P G LTy P o ATy

0 0.1936 0] 0 0.376 0
.01715 252 .058 02 iy .068
03425 27T .083 .0k 180 Jlok
.051h .309 116 .06 .506 .130
.0685 .350 56 .08 .528 152
.0856 .363 170 .10 ShT JA71
.1028 - LhoT .213 Jd2 .565 .189
O 581 .205

< . HAGA
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Stesl cover plate

TN 2021

o/pk 5

ikl



NACA TN 2021 25

) /Mm""

:{\\
o

10004

;\
<
¢
s
1
{;

Compressive load, 1b

Strain gages
O 5: 21
<&

] ] 1 ] |

(@] .
b 2x/07

Strain-gage readings

(a) Linear part of load-strain curve for four typical pairs of
gtrain gages.

Figure 2.- Typlcal experimental result. Internal pressure, l% psi.
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Strain-gage readings
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] L. ] | 1 i | . | R ! ] I I
LIT 2,18 317 420 521 6,22 723 J2¢ 925 16,26 1,27 1228 329 1430 531

Strain-gage positions

(b) Close to buckling load.

Figure 2.~ Concluded.’
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Figure 3.- Comparison of theoretical and experimental results of the
. buckling stress at varlous internsal pressures,
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Theoretical results

Experimental result, first test
Experimental results, subsequent tests
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Figure 4.- Theoretical and experimental results showing the increment
of buckling stress due to internsl pressure.
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Figure 5.- Relation between the aﬁerage compressive stress o and the

end-shortening €.
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